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A B S T R A C T

As one of the main contenders of the theory of distinctive fea-
tures, Element Theory (ET) has seen much change over the last
decades. While this has vastly advanced its capability and accu-
racy as a theory of subsegmental phonology, on-going develop-
ment has sometimes come at the price of explicitness in defini-
tion of the precise model assumed and consequently there are
some unclarities and apparent contradictions in some of the
current proposals of ET.

This dissertation first gives an outline of the current state of
ET in light its historical development, highlighting the ways in
which it differs from Feature Theory, Autosegmental Phonol-
ogy and Government Phonology. The position that it functions
as a relatively independent model of subsegmental representa-
tion is advanced.

On the basis of this, the dissertation proposes a concrete for-
malisation of ET, ground in basic mathematical set theory. It
is argued that, somewhat analogous to the set-representation
of syntactic treelets as ordered pairs {α, {α, β}}, segmental rep-
resentations can be seen as partially ordered sets of the type
{{α}, {α, β, γ, . . .}}. It is illustrated how such sets can be used
as the basis to formalise the model of ET set out here, including
aspects such as composition, decomposition, well-formedness,
and geometry.

Finally, based on the work of Reiss (2012), this model is used
to compare the generative capacity and power of ET to that
of classical feature theory. It is argued that a distinction needs
to be made between generative capacity and generative power,
and that the desirability or undesirability of overgeneration/pow-
erfulness is more fine-grained and differs between the individ-
ual aspects of subsegmental phonology, specifically the set of
all possible segments, the set of all possible inventories and the
set of all natural classes. It is shown that ET is, converse to
common assumption, actually more powerful than feature the-
ory but its concrete capacity is reduced by the relatively small
number of primes assumed.
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1
I N T R O D U C T I O N

Much of the early work on linear models of phonology, such
as Jakobson et al. (1952), Jakobson and Halle (1956) and espe-
cially Chomsky and Halle’s (1968) The Sound Pattern of En-
glish (SPE), have assumed that the primary objects manipulated
by the phonological component are bundles of binary features.
These features covered not only categorial distinctions related
to the phonetic form of the output, but also aspects such as
stress, syllabicity, boundaries, &c. As such they made no ex-
plicit distinction between prosodic and melodic (i.e. segmental)
information. Later research (e.g. Goldsmith, 1976; Halle and
Vergnaud, 1982) however showed the need to formally distin-
guish these two levels of phonological representation. This led
to the development of nonlinear models such as Autosegmental
Phonology (AP, Goldsmith, 1976) which position prosodic and
melodic information at different levels of representation and
link them non-monotonically (cf. Harris, 2007).

One particular outgrowth of such nonlinear models is Gov-
ernment Phonology (GP, Kaye et al., 1985), which also devel-
oped a unique approach to melodic representation. In GP, the
melodic primes manipulated by the phonology were assumed
to be larger and further abstracted from articulatory mechanics
than the SPE-style feature representations otherwise commonly
assumed. Kaye et al. (1985) proposed that melodic representa-
tions consist of elements arranged on their own tiers below the
skeletal tier. It was then assumed that an operation known as
Element Calculus (EC) would convert these melodic representa-
tions into matrices of binary features that could be interpreted
phonetically.

Research following this line of inquiry has however since
shifted away from the idea that there may be different levels
of phonological and phonetic interpretations linked by an EC,
and instead have taken the stance that elements are the only
level of melodic representations and can be mapped directly
into the acoustic signal (e.g. Harris and Lindsey, 1993). As re-
search on this paradigm of melodic representation, now princi-
pally known as ET, has progressed over the last decades, many

1



2 introduction

assumptions have changed and a number of variations of ET
have appeared.

A matter that has however often been neglected in the ongo-
ing development of ET is that of its formalisation: while we have
a formal account of AP with Kornai (1995), no notable attempts
have been made to formally define the properties of current ver-
sions of ET. Of course a solid theory requires its framework to
be defined as precisely as possible, in order to make precise pre-
dictions and avoid inconsistencies or vagueness. Additionally,
a formal characterisation of a theory is what is required as the
basis for comparison of different theories of melodic represen-
tation and a pre-requirement for efforts such as computational
modelling.

In this dissertation, I will develop such a formal characteri-
sation of ET grounded in the mathematical theory of sets and
demonstrate how this can be used to compare the properties
of different theories of melodic representation: Feature The-
ory (FT), Underspecification Theory (UT) and ET. For this I will
first give a brief overview of the version of ET which I will as-
sume as the basis for my formalism in the next chapter. This
will be followed by a chapter in which I discuss the imple-
mentation of this model in set-theoretic terms, discussing dif-
ferent possibilities of definition where appropriate and giving
evidence for choosing one over another definition where this
is possible. In the subsequent chapter I present a study based
on Reiss (2012) which compares the Generative Capacity (GenC)
and Generative Power (GenP) of ET to that of FT and UT. To con-
clude, I will give a brief summary of what was achieved by
the work presented in this dissertation and how this may foster
further inquiry. I will assume that the reader is familiar with
the basic assumptions and constructs of mainstream FT, UT, AP
and feature geometry. Concerning the mathematical proposi-
tions in this dissertation, a basic understanding of elementary
set theory and first order predicate logic is assumed1.

1 The material presented in the first few chapters of Partee et al. (1990) goes
far beyond what is required; a much more concise alternative is Houston
(2009).



2
E L E M E N T T H E O RY

2.1 introduction

Element Theory (ET, Kaye et al., 1985; Kaye and Harris, 1990;
Harris, 1994; Harris and Lindsey, 1993, 1995a; Backley, 2011) is
an alternative model of segmental representation that has devel-
oped as part of Government Phonology (GP, Kaye et al., 1985,
1990; Kaye, 1992, 2000; Harris, 1994), which is itself based on
the earlier work in Autosegmental Phonology (AP, Goldsmith,
1976). In this chapter, I will give a brief outline of ET and detail
the principal ways in which this approach differs to that made
popular by Chomsky and Halle’s (1968) The Sound Pattern of
English (SPE). In particular, I will focus on the version of ET ad-
vanced in Kaye et al. (1985); Harris (1994); Harris and Lindsey
(1995a); Backley (2011). As this will be important for discussion,
I will also include a short account of the now outdated Element
Calculus (EC), the method employed in Kaye et al. (1985) to
convert elemental into feature representations.

2.2 segmental composition

With regards to the composition of segments, ET stands in stark
contrast to that of traditional Feature Theory (FT). One of the
major differences is the nature of primitives assumed, which in
ET are known as elements. Distinctive features in traditional FT
are assumed to be throughout bivalent and equipollent (i. e. to
express a two-way contrast), while in ET all elements are mono-
valent and privative — they only express a property through
their presence, but not through absence. We can call this the
Strict Privativity Principle (SPP):

(1) strict privativity principle : All segmental
primes are monovalent and privative.

Whereas SPE-style features are linked to articulatory phonet-
ics, elements are linked to the acoustic signal. While features
are only meaningful to the interpretation component of the lan-
guage faculty in fully specified matrices, ET posits that each
element itself is an inherently meaningful, i. e. independently

3



4 element theory

interpretable, cognitive prime. This means that, while for in-
stance features such as [+low] or [nas] cannot be pronounced
by themselves, elements such as |A|, |I| and |U| are pronounce-
able in isolation as [a], [i], and [u] respectively. In combination,
these elements give rise to more complex segments. For in-
stance |I, U| gives rise to a front rounded vowel [y], |A, I| to
a mid front unrounded vowel [e], |A, U| to [o]; the combination
|A, I, U| represents a mid front rounded vowel [ø]. We can call
this the Independent Interpretability Principle (IIP):

(2) independent interpretability principle : All
segmental primes are interpretable both independently
in isolation and in combination with other primes.

A segment can also be completely underspecified, i. e. empty.
This is usually realised as the central vowel schwa [@], the ‘un-
modified default signal’. In analogy with the Empty Category
Principle (ECP) in GP and syntax, which determines when a po-
sition (a category) may be empty, or forego phonetic interpreta-
tion (namely, when it is properly governed), let us call this the
Empty Representation Principle (ERP):

(3) empty representation principle : A segmental
representation may be empty of primes.

ET also assumes that segments are inherently structured, in
contrast to the assumption that feature matrices are unordered
sets. A segment in ET is nowadays commonly assumed to have
a single, optional head. I. e. one of the elements in the segment
can be selected as a head (notated by underlining it) and it
will then propagate its characteristics asymmetrically over the
other elements, the dependents. Thus, while for instance |I, A|
is interpreted as a mid front unrounded vowel [efl], |A, I| is in-
terpreted as high-mid [e] and |A, I| as a low-mid [E]. As such,
segmental structure in ET is not only relevant to phonological
processes, as is the case with feature geometry, but it is phono-
logically meaningful — segments with identical content but dif-
ferent heads are conceptually distinct. Conversely, the order of
elements does not make a meaningful differentiation, so that
two segments |X, Y| and |Y, X| receive the same interpretation.
Let us refer to these two principles as the Single Optional Head-
edness Condition (SOHC) and the Isomericity Principle (IP), re-
spectively:

(4) single optional headedness condition : A
segment may have exactly one head or no head at all.
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(5) isomericity principle : Two segments are
phonologically distinct if and only if they are composed
of different elements or have a different head.

Note however that the assumption of the SOHC is not universal
among current work in ET, for instance Backley (2011) allows
segments to be at least doubly headed. This concept of headed-
ness is also different to that which was used earlier in Element
Calculus; this is discussed further in section 2.6.

2.3 elements , compounds and interpretation

A different aspect of the assumptions surrounding elements is a
debate about the granularity of the phonological primes. Early
proposals of elements, and specifically Kaye et al. (1985), did
not contest that the phonological spell-out was principally ar-
ranged via features. The association of elements with the acous-
tic signal was made later (Lindsey and Harris, 1990; Harris and
Lindsey, 1993). In fact, Kaye et al. (1985) proposed a specific
mechanism called Element Calculus, which translated elements
into feature representations1 which could then be realised by
the articulators (I discuss this further in section 2.6). While, it
was soon realised that these translations did not produce desir-
able phonetic representations (Coleman, 1990a,b; Kaye, 1990),
the core argument was about the type of primes that are ma-
nipulated by the phonology proper, and that these were more
granular, privative objects, rather than the phonology directly
manipulating highly resolute articulatory features. A major de-
sire was also to be more restrictive in terms of the phonetic
forms the system could generate (Kaye, 1990).

As an alternative to Kaye et al.’s (1985) proposal, Lindsey and
Harris (1990), Harris and Lindsey (1993, 1995b), Harris (1994,
1996) and Harris and Urua (2001) have argued that there is no
such distinct level of phonetic (feature) representation and that
elements by themselves are mapped into the acoustic speech
signal independently. This is what is now the commonly ac-
cepted view in ET. To illustrate this conception, Harris and Lind-
sey (1993) utilised visualisation of the spectral patterns of the
three underlying vocalic primes of ET, |A|, |I|, and |U|— the
corner points of the triangular vowel space. Their individual
vowel realisations [a, i, u] are associated with particular types

1 In fact, they assumed that each element itself is a fully specified feature
matrix.



6 element theory

of spectral patterns, which Harris and Lindsey termed mAss,
dIp and rUmp respectively (cf. figure 1, based on Backley 2011).
Their core observation is, that the spectral patterns of the hy-
pothesised compound representations such as |A, I| for [e] or
|A, U| for [o] are basically combinations of these primitive pat-
tern. As can be seen from figure 2, |A, I| here shows the typi-
cal dIp pattern with two prominent formants, however the low
energy concentration associated with F1 in the mAss pattern
clearly modulates this and leads to lowering of F2 and smooth-
ing of the dip between the two formants. In the |A, U| pattern,
the F1 peak of the mAss pattern is lowered due to the first peak
in the rUmp pattern, and rUmp’s secondary peak also clearly
shows modulation on the following slope, the mAss pattern is
further visible in the later rise in energy.

Figure 1: Spectral patterns of |A|, |I|, and |U|: mAss, dIp, and rUmp.

Figure 2: Spectral patterns of the compounds |A, I| and |A, U|.

With such evidence that supports not only an association
of the isolated primitives themselves with acoustic properties,
but also relate their compounds to the same, salient character-
istics, one can then see how basic combinatorics of these ele-
ments allow modelling of the basic vowel space, from just the
three corner vowels (6) to a larger system with intermediates
(7) which follows from simple two-element compounds. When
single headedness is introduced, one can additionally distin-
guish two intermediary forms (8) on either side, depending on
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which primitive headedness falls. Of course, the SOHC still per-
mits unheaded compounds, further increasing the modellable
intermediary vowels between the corners of the vowel space (9).
Of course, adding three-element compounds further increases
what can be modelled in this space, as does the introduction of
elements other than |A|, |I| and |U|.

(6) i u

a

(7) i y u

efl ofl
a

(8) i y W u

e
@

o

E O

a

(9) i y 1 W u

e

@

o

efl ofl
E O

a

2.4 the elements

|A|, |I| and |U| are the core resonance elements on which vowel
systems in ET are modelled. While such effects as vowel length
can be relegated to the surrounding autosegmental model, the
representations of consonants and even such effects as nasal-
ity and voicing in vowels obviously require the introduction of
further elements. Most current work in ET assumes at least six
elements, given in table 1 (cf. Backley, 2011). However, there
is a good range of variation between precisely which elements
are assumed, and what specific properties are ascribed to them.
Table 2 gives a number of further elements that have frequently
been used in the past and are sometimes still assumed today
(see esp. Harris, 1994). One particular trend has clearly been
to reduce the number of elements used however, exemplified
by work such as Nasukawa (1999, 2000, 2005) who argued for
the representation of voice and nasality by one element instead
of two, or Pöchtrager (2006) who argued that what is often en-
coded by the elements |A|, |H|, |P| are not actually elemental
but structural properties.

Element Theory also assumes what is often referred to as
consonant–vowel unity (Backley and Nasukawa, 2010; Backley,
2011). This is the assumption that the exact same primes are ac-
tive both in the segments that are realised as vowels as in those
that are later realised as consonants; whether they are realised
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Element Name Characteristics

|A| mAss Lowness, uvular and pharyngeal place
|I| dIp Frontness, palatal and coronal place
|U| rUmp Roundness, velar place
|H| high High tone, aspiration, frication
|L| low Low tone, voicing, nasality
|P| edge Stopness

Table 1: The six most commonly assumed elements of ET.

Element Name Characteristics

|@| neutral Centralisation, identity function
|R| coronal Coronal place
|h| noise Noise, glottalness, frication
|N| nasal Nasality, murmur

Table 2: Some further elements that have been proposed.

as one or the other depends on the structure above the segment.
A familiar case in hand are vowel–approximant pairs such as
[u, w] and [i, j], which are both very similar phonetically and
pattern together phonologically. Take as an examples possible
pronunciations of the final segment in the verb /du/ ‘to be.1SG’
in colloquial Welsh. Look at the three sentences in (10 b–10 a).

(10) (a) [post.mOn.du.i] ‘I’m a postman.’

(b) [du.in.ha.pIs.i.jaun] ‘I’m very happy.’

(c) [dwim.@n.ha.pIs] ‘I’m not happy.’

In each of the three sentences, /du/ is followed by the 1SG pro-
noun /i/, resulting in the form [du.i] as in (10 a). Attaching a
clitic particle as in (10 b) and (10 c) can force resyllabification,
so that (10 b) can be pronounced as either [du.in] or [dwin] and
(10 c) is always pronounced as [dwim]. From this we can clearly
observe that one and the same segment can be realised either as
[u] or as [w], depending on how it is syllabified. The phonology
requires it to be a vowel to function as a nucleus where no cliti-
cisation takes place. The appropriate generalisation is that the
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representation of the segment itself does not change at all, as
would be the case for instance with a [±syll] feature2: in both
cases this is simply |U| in the underlying representation.

A good example to illustrate how resonance elements also
encode place of articulation comes from Inuktitut3. In Inuktitut
the 1SG pronoun is attached to a verb as a suffix and can appear
either as [tuNa] or as [juNa]. The form [juNa] appears following
a vowel, as in [nanu:qujuNa] ‘I’m a polar bear’, while [tuNa] sur-
faces after consonants, e. g. in [uqalima:qtuNa] ‘I read’. This pat-
tern can be seen with all the Inuktitut personal pronouns and
also with other suffixes. Indeed, this is a case of intervocalic
lenition: the stop between two vowels becomes more sonorous,
and this is realised through loss (delinking in autosegmental
terms) of the edge element, so that |I, P| = [t] becomes |I| = [j];
thus showing a clear relationship between resonance and place
of articulation in a stop consonant.

Elements, then, are shared across all segmental representa-
tions, but may receive different interpretation depending on
the dominating category of the segment itself. In this way, the
resonance elements |A|, |I|, |U| receive a place interpretation in
consonants, while elements such as |L| which encode nasals or
true voicedness (depending on headedness, cf. Nasukawa 2005)
in consonants may encode nasalisation in vowels.

2.5 government phonology

The framework from which ET originated is GP, which itself is
largely based on AP but aside from assuming elements as the
phonological primes instead of features also introduces the no-
tions of licensing and government to account for intersegmental
restrictions on phonological structures. Importantly, GP inher-
ited the principal autosegmental skeleton from AP, a typical GP
variant of which is illustrated in (11).

2 Depending on assumptions, the features [±tense,±phar] may also need ad-
justing in [u] ∼ [w] alternation.

3 This data is in the Uqqurmiut dialect, principally sourced from the Pirurvik
Centre’s website for learners of Inuktitut, http://www.tusaalanga.ca/.

http://www.tusaalanga.ca/
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(11) O

×

ς1

R

N

×

ς2

Co

×

ς3

}
syllable tier

timing tier

segmental tier

Notably, syllabic structure is relegated to two syllabic tiers
above a timing tier (or, the ‘x-slots’ as they are sometimes called),
on which each position assigns a unit of temporal space to the
segment attached below it. The syllabic structure is limited to
onsets and rhymes, where early on rhymes were allowed to
branch into nuclei and codas, but more recent proposals aban-
don the notion of a coda. There is no level of syllabic structure
dominating both the onset and rhyme, and their relations are in-
stead determined by government and by licensing constraints,
which for lack of space and immediate relevance I will not dis-
cuss further here.

Along with the adoption of the autosegmental skeleton in
this framework, subsegmental primes were also assumed to oc-
cupy their own tiers, so that the segmental tier may be further
divided into an |A|-tier, an |L|-tier, an |P|-tier and so forth, as
apparent from the structure of /n/ in (12):

(12) ×

A

P

L
Essentially, this then assumes full, language dependent, or-

dering of the primes below the segment. Additionally, it is
usually assumed that two primes can share a single such tier.
This is an easy way to account for restrictions on the phono-
logical content of a melodic system. For instance, voiceless or
aspirated nasals are rather uncommon cross-linguistically. Tak-
ing into account proposals that suggest that both voicing and
nasality are represented by the same prime (Nasukawa, 1999,
2000, 2005), call it |L|, where headed |L| represents voicing and
unheaded |L| nasality, it clearly follows that a system that has
voiceless nasals must be an H-system, i. e. a system that repre-
sents aspiration via |H| instead of true voicing by |L|, because
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we could not represent a voicing contrast in nasals with a single
such prime. Let us then look at two languages with aspiration
systems, English and Welsh. English does not have aspirated
nasals, but Welsh does. In Welsh, |A, P, L| may thus represent
voiced alveolar nasal /n/, while |A, P, L, H| represents an aspi-
rated nasal /n

˚
/. To account for the impossibility of such rep-

resentations in English, it is then sufficient to propose that |L|
and |H| share a single tier, thus only allowing the three repre-
sentations for /n,t,d/ in (13), but none that could be interpreted
as a voiceless or aspirated nasal.

(13) ×

A

P

L

/n/

×

A

P

H

/t/

×

A

P

/d/

*×

A

P

L,H

*/n
˚
/

2.6 element calculus

The compounding operation of the EC in early GP is a binary,
non-commutative function, i. e. X ◦Y 6= Y ◦X. Thus under EC el-
ements had to be combined cyclicly pairwise and the ordering
of elements within a segmental representation was important —
in contrast to the unordered complement assumed in current
versions of ET. Thus, complex representations such as |X, Y, Z|
have to be calculated as X ◦ (Y ◦ Z)4, forcing us to actually spec-
ify segmental representations as fully ordered pairs of the type
〈X, 〈Y, Z〉〉, or in short Kuratowski notation as used to repre-
sent treelets in much of current syntactic work {X, {X, {Y, {Y, Z}}}}.

This of course aligns perfectly well with the assumption made
in the preceding section that each element occupies its own tier,
giving full ordering of elements in the autosegmental skeleton.
Compare the two trees in (14) and (15):

4 I. e. assuming leftward compounding, otherwise they could also combine as
one of (X ◦Y) ◦ Z, (X ◦ Z) ◦Y, (Y ◦X) ◦ Z, Z ◦ (X ◦Y), or any other possible
combinations of bracketing and linear order.
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(14) X

Y

Z

(15) X

X Y

Y Z
We can see from this how the autosegmental representation in
(14) is really just an abbreviated version of (15), which avoids
representing the intermediate X-level. In addition, this gives us
a good reason to assume that, where two primes are required
to share a single tier, only one of them can appear in any one
representation, given that the compounding operation fed by
this representation only operates with binary input.

Since the idea of an EC and the level of phonetic representa-
tion to which it mapped have however been abandoned, this
can no longer be taken as a justification for either the assump-
tion of linearity or that of shared tiers, which critically hinges
on that of fixed tiers. And of course no such ordering, apart
from a single head, is commonly assumed nowadays, as dis-
cussed in section 2.2.

2.7 composition and decomposition

In the previous section it has been discussed how EC used to
support the idea that elements below the timing tier are or-
dered on their own tiers, and presumably that they can be af-
fected by phonological processes much like those in AP, linking
and delinking. However, such an assumption would be prob-
lematic for a number of reasons.

First, if every element has its own tier in a representation and
their order is fixed, delinking a segment that is not on the bot-
tommost tier always requires us to also delink all the segments
below that prime. Even under the weakest assumption of tier
ordering, namely that tier-order can vary from segment to seg-
ment, this predicts that the same segment cannot be made to
delink two independent primes in different circumstances.

This is however precisely what we see in processes such as
initial consonant mutations in the Celtic languages. Here mor-
phosyntactic context can trigger a phonological change on the
initial segment of a targeted word, but different paradigms co-
exist. For instance in Welsh, there are three such mutations: soft
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mutation, which turns a voiceless plosive into a voiced plosive5;
nasal mutation, which turns a plosive into a nasal; and aspi-
rate mutation, which turns a plosive into a fricative (Ball and
Müller, 1992). At least two of these, soft mutation and aspirate
mutation, require ‘delinking’ of an element from the represen-
tation. To turn a voiceless into a voiced plosive, |H| must be
delinked6, and to turn a plosive into a fricative the stop element
|P|must be delinked. This is also what both existent ET accounts
of Welsh mutations, Buczek (1995) and Cyran (2010), argue. Let
us assume a representation of |U, P, H| for /p/ (Cyran, 2010, p.
59). We can then illustrate both processes as in (16) and (17):

(16) ×

U

P

H

p

→ ×

U

P

H

b

(17) ?×

U

P

H

p

→ ×

U

P

H

w
While the change /p/→ [b] in soft mutation is no problem, (17)
shows that with the same ordering of tiers we cannot get the
change /p/ → [f] which would be expected for aspirate muta-
tion, instead predicting a labial-velar approximant. If we were
to reverse the order of the two tiers, we could model aspirate
mutation but not soft mutation.

Second, some spreading processes such as vowel harmony,
where an element spreads from one vowel to another without
affecting intervening consonants, are a problem for the most
simple frameworks of AP as they would normally violate the
Non-Crossing Constraint, which says that no two association
lines in a representation may cross each other. Resolving this
requires additional assumptions, for instance that nuclei and
onsets project to different parts of the representation so that
their lines need not cross to connect them, or proposals that
limit constraints on line crossing to certain contexts (cf. Cole-
man and Local, 1991; Hyman, 2013).

The operation by which segmental representations are altered
in ET is thus much more general than the autosegmental notion

5 Soft mutation also targets /m,ì,r
˚
/, but this is not of relevance to the argu-

ment made here.
6 we know that Welsh is an |H|-system by virtue of it possessing aspirated

nasals, but for further discussion see also Cyran (2010).
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of linking and delinking. It is mostly assumed that a phono-
logical process can add or remove single elements to segmen-
tal representations without either delinking the remaining rep-
resentation or establishing any representational association or
link between the two segments, though of course other con-
straints in target selection &c. still apply; especially noteworthy
is what is sometimes called the Compositionality Principle (see
e.g. Cyran, 2010), which requires that elements to be added
to a segmental representation are present in the segment from
which the change originates (i. e. elements cannot appear ‘out
of the blue’).

While practically all work in ET now assumes these more
loose operations for adding and removing elements from seg-
mental representations, the terms linking, delinking and spread-
ing are still commonly used for this. The departure from ac-
tual AP-type linking and delinking is also visible in the nota-
tion adopted for graphical illustration in Backley (2011), who
shows composition with an arrow, as in (18), and decomposi-
tion through a grey box, as in (19). For clarity I will from here
on use the terms composition and decomposition to refer to oper-
ations that add and remove elements from a representation.

(18) ×1

X

Z

×2

A

Y

B

Composition: spreading of
Y from ×2 to ×1.

(19) ×

X

Y

Z

→ ×

X

Y

Z

Decomposition of Y,
without affecting the Z-tier.

Of course abandoning the notion of ordering, tiers and au-
tosegmental relations in the segmental representation also presents
a problem for the account of impossible segmental representa-
tion via assignment of the same tier to these elements, and the
more general composition and decomposition operations used
now are not powerful enough to exclude such combinations
from occurring. However, this does not mean that the idea of
elemental antagonism is incompatible with this system, and I
will introduce an alternative account for elemental antagonism
without reference to tiers or ordering in section 3.9.
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2.8 element geometry

In FT, the observation that certain features seem to function in
groups has led to the proposal of a ‘geometric’ arrangement
of subsegmental primes in place of the simple view that they
are simply arranged one by one on tiers below the timing tier
(cf. Clements, 1985; Halle, 1995). ET of course must account for
the same observations, and the proposition of a subsegmental
geometry can be readily adapted to elements. Since the number
of primitives is significantly smaller than that in FT however, the
geometric arrangement will shrink accordingly. Harris (1994,
p. 128), who still uses a larger number of elements than are
commonly assumed today, proposes the arrangement in (20) as
one that is representative of the consensus at the time7:

(20) ×

Root

P h N Laryngeal

H L

Place

A I U R

A common example that illustrates the benefit of such ‘geo-
metric’ arrangements is that of nasal place assimilation. Nasals
have been noted as a natural class with a particular tendency
to undergo place assimilation, often across all places of articula-
tion. Padgett (2002) gives Kpelle as a prime example of this. The
1SG possessive prefix in Kpelle is a placeless nasal /N/ which al-
ways assumes the place of articulation of the first consonant of
the root to which it attaches, giving forms such as [mbolu] ‘my
back’, [nduE] ‘my front’, [NgOO] ‘my foot’, and so forth (Padgett,
2002, p. 81).

Instead of requiring separate processes for the assimilation
of each of the place elements in these consonants, an element
geometry as in (20) can generalise this to leftward spreading of
the entire place node, as illustrated for [nduE] in (21).

7 See van Oostendorp (2005) for what he sees as the analogous consensus in
FT.



16 element theory

(21) ×

N

N

×

P

Place

R

d

→ ×

N

N

×

P

Place

R

d

2.9 summary

In this overview of ET, I have first set out its key properties
by stating them as explicit principles. I have then drawn on
some aspects of these and historical development within GP to
clarify, explicate and narrow down to the particular strand of
ET which will form the basis of the remainder of this work. In
doing so I have also pointed out some inconsistencies, in par-
ticular concerning assumptions surrounding tiers, shared tiers
and orderings, which are denied both by existing work in the
framework and by the explicit principles of ET, but still seem
to sometimes be carried into current proposals through the his-
toric development of the theory.



3
A S E T- T H E O R E T I C M O D E L O F E T

3.1 introduction

In the second chapter, I have given a brief outline of what I see
as the current state of ET. In showing how ET developed out
of GP and adopts or abandons many previous notions of that
framework and earlier ancestors such as AP, it became appar-
ent that this theory of subsegmental structure, while at home
in a broadly autosegmental framework, is rather self-contained
and does not itself adhere to the same structural principles and
relations of other autosegmental systems. In particular, it has
been shown how current versions of ET do not appeal to any
of the notions of association lines, tier ordering, linking and
delinking and how these have been replaced by the SOHC, com-
position and decomposition.

With his dissertation Formal Phonology, Kornai (1995) has demon-
strated that AP can be readily captured by a more explicit and
rigorous mathematical model. Apart from his interest in bridg-
ing the gap between theoretical research and computational ap-
plication, one of Kornai’s main motivations is probably the fol-
lowing statement, which he cites, from Pullum’s 1989 comment
on the lack of formalisation in large parts of linguistic research:

Even the best friends of the nonlinear phonology
that has driven the relatively formal pre-1977-style
segmental phonology into the wilderness [. . . ] will
admit that it isn’t trying to meet the conditions set
out above for formal theories. True, a very signif-
icant outpouring of new ideas and new diagram-
matic ways of attempting to express them has sprung
up over the past decade; but it is quite clear that at
the moment no one can say even in rough outline
what a phonological representation comprises, us-
ing some exactly specified theoretical language. Nor
is there much sign of published work that even ad-
dresses the issues involved in a serious way. Drift-
ing this way and that in a sea of competing propos-
als for intuitively evaluated graphic representation
does not constitute formal linguistic research, not

17
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even if interesting hunches about phonology are be-
ing tossed around in the process. (Pullum, 1989, p.
138)

Clearly, with the substantial departure from the structures dic-
tated by AP, this criticism is just as applicable to ET now as it
was to AP before Kornai (1995).

In this chapter, I will seek to address this issue by giving a
formal characterisation of ET as outlined above, ground in basic
set theory and logic. For this I will first discuss the extent and
delineation of this model. The following sections will give def-
initions for the different components of this model. Of particu-
lar importance here is section 3.5, which gives a mathematically
precise definition of what constitutes the core element of ET, a
well-formed segmental representation1. I then discuss the rela-
tions within segments and operations on segments. Finally, I
introduce extensions to the presented model which add mecha-
nisms that are able to capture the notions of Element Geometry
and elemental antagonism (shared tiers).

3.2 representations and derivations

Traditionally, grammars are systems that operate on a set of
symbols, often divided into terminal and non-terminal sym-
bols. Via a set of relations and operations (rules, transforma-
tions, &c.). The grammar then specifies the way in which these
symbols may be combined into representations. For instance
given a set of symbols V = {a, b}, a grammar can be spec-
ified that allows either a or b to follow a, but only b to fol-
low b, via a set of rewrite rules such as O = {∅ → a, ∅ →
b, a → aa, a → ab, b → bb}, which can operate on the right-
most symbol in the representation. From an empty represen-
tation ∅ we can then obtain a or b, from b we can obtain a
sequence of any numbers of b’s such as {b, bb, bbb, bbbb, . . .}. If
we begin with a, all the representations featuring only a, i. e.
{a, aa, aaa, aaaa, . . .} are derivable. But we can also derive rep-
resentations of any number of a’s followed by any number of
b’s, e. g. {ab, aab, aaab, abb, abbb, aaabb, . . .}, but representations
where any b precedes an a, such as *{ba, baaa, bba, aba, aaaba, . . .}
are ruled out. The grammar provides a mechanism by which we

1 Note that my use of the terms segmental representation and segment is largely
interchangeable in this chapter.
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can derive representations from its vocabulary, the set of sym-
bols V.

A system that models the phonology of segments has to work
in a somewhat different way however. Clearly, the primary in-
put to the system are not a set of atomic symbols such as fea-
tures or elements, which are selected and combined to form full
segmental representations. The primitives of segmental compo-
sition in themselves are largely meaningless and there is no
semantics or similar system which would tell us which to se-
lect for our representations. Instead, a grammar of segmental
phonology has both as its input and its output some kind of al-
ready existing, well-formed representation. After all, these are
the primary units which have to be learned and stored in the
speaker’s lexicon to enable the transition from an abstract rep-
resentation to the linear, pronounceable units of speech that are
segments. Thus, the way in which such a grammar operates is
by altering representations, not by deriving them2. Since repre-
sentations are principally composed of symbols, it is of course
still necessary for the grammar to make reference and enable
access to these primitives.

We can specify such a kind of grammar as a set

(22) G = 〈V, Σ, R, O〉,

where

a. V is the vocabulary, the set of atomic primitives v, e. g. the
set of elements in ET;

b. Σ is the set of all well-formed segments ς defined over V;

c. R is the set of relations from Σ to V or ℘(V), such as the
head relation; and

d. O is the set of operations, mappings from S to S such as
composition and decomposition.

2 Though this may of course only be partially so for phonological models
that posit a transition from one vocabulary to another within the same
level of representation, e. g. if it is assumed that the lexicon stores [±voice]
but the phonological representations translate this into [spread glottis] and
[constricted glottis]. For such models many more factors are relevant than
for the type of system presumed here, such as what is allowed in the lexi-
con and in the final representations, where translation happens and through
which system, &c. (In fact, most of these models can probably be analysed
as systems with different levels of representation with overlapping vocabu-
lary).
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The following sections set out how these components can be
defined to give a grammar G of this type which models the
theory of ET.

3.3 the vocabulary

As discussed in section 2.3, one major factor on which work in
ET deviates is the precise set of elements which are assumed.
This type of variation is however nearly irrelevant for the basic
characteristics of ET, and whether some element v is assumed
or not does not affect the overall functioning of the grammar.
To reflect this, the elements ought to be referred to in an arbi-
trary fashion in formally characterising ET, and so the set of all
elements V does not need to be defined specifically. It suffices
to state,

(23) Let the vocabulary V be the set of all atomic primitives,
i. e. elements, in G.

It is in concrete instances of application where we will then
want to substantiate, or ‘populate’, the vocabulary. Following
this, for instance for Backley (2011), V is given by

(24) V = {A, I, U, H, L, P}.

In contrast, under reference to Harris (1994), V is given by

(25) V = {A, I, U, R, @, N, H, L, P, h}.

There is a further gain from the arbitrariness of V not dis-
cussed so far however: it allows for straight forward implemen-
tation of the parametric presence of an element in a system
(Cyran, 1996). Cyran, who generally assumes the existence of
a noise element |h|, argues that due to parametric variation,
some languages such as Munster Irish (Cyran, 1997) and Welsh
(Cyran, 2010) do not employ this element in representations,
instead using resonant heads to represent this type of noise
property (cf. Ritter, 1992). We can now formulate Cyran’s h-
Parameter as follows:

(26) (a) {A, I, U, H, L, P} ⊆ V for all languages,

(b) {h} ⊂ V for any language that is an h-system,

(c) there are no other x ∈ V.
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Additionally of course working with an arbitrary vocabulary,
rather than relying on at least some substantial information
about its content, allows for investigations of the effect that
such matters as vocabulary size have on other properties of G,
such as its Strong Generative Capacity (GenC); and this is pre-
cisely what is exploited for the measure of Generative Power
(GenP) in chapter 4.

3.4 segments

In section 3.2 it was argued that the primary operands in ET
are the segments ς, not atomic symbols as in most derivational
grammars. Segments are of course still composed of the prim-
itives v ∈ V, and so we need to define how these are to be
placed formally in the segment. This now must reflect what was
discussed about the composition of segments in ET in section
2: they are generally unordered, with one element optionally
singled out as a head (recall the Single Optional Headedness
Condition). Headedness in most theories of linguistics gener-
ally asserts asymmetry over the part of the representation that
is headed by it, and this is also the case in ET. This asymmetry
is represented in much of syntactic theory as a structural prop-
erty, and it is the head which assigns the category of a phrase.
This is commonly represented by a tree as in (27):

(27) XP

X Y

Where X is the head, XP the phrase of category X, and Y the
complement of X. In mathematical terms, such asymmetry is
simply expressed as an ordered pair, so that we can say XP =
〈X, Y〉. This is in fact what is commonly done in the formal de-
scription of phrase structure, in the more low-level Kuratowski
notation (Kuratowski, 1921) for ordered pairs

(28) 〈a, b〉 .
= {a, {a, b}}.

For instance Chomsky (1995) defines the tree adjoining opera-
tion merge as

(29) merge(α, β) = {α, {α, β}}

which not only suffices for the first selection of Y by X, but
if XP were later selected by Z, we could further substitute Z
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for α and {X, {X, Y}} for β to receive {Z, {Z, {X, {X, Y}}}},
illustrated in (30)3:

(30) ZP

Z XP

X Y

If we want to adopt this notation for the representation of seg-
ments in ET we are faced with a challenge: there may be more
than two elements in a representation but only one head, and
the head may be optional. The latter could be easily addressed
by saying that, for instance ∅ 6∈ V and then the head may sim-
ply be the empty set, but this does not get us much further.
Instead, let us begin with the fuller, more standard Kuratowski
notation for ordered pairs

(31) 〈a, b〉 .
= {{a}, {a, b}}.

This notation has the advantage that no atomic elements are
direct members of the outermost set, instead, we find two sets
which in themselves contain the substantial content of the or-
dered pair. In (31), {a} is representative of the head position,
and {a, b} with the exclusion of what is in the head (i. e. {a, b} \
{a}) is representative of the complemental position. To resolve
the problem of a single head and several ‘complements’, we can
now extend this notation by allowing any number of further el-
ements in the set that now contains only a and b, i. e.

(32) |a, b1, . . . , bn|
.
= {{a}, {a, b1, . . . , bn}}.

The examples in (33 a) to (33 c) illustrate how some representa-
tions would then have to be rewritten as such a set:

(33) (a) |A, I| = {{A}, {A, I}},
(b) |A, H, P| = {{A}, {A, H, P}},
(c) |I, L, P, N| = {{N}, {N, I, L, P}}.

Similarly, we can allow the number of b’s to be nought to take
care of the case where there is only one element which is also
the head (e. g. |A| or |I|). In this case, the two subsets are identi-
cal and collapse, since by definition in set theory {X, X} = {X},

3 See e. g. Bury (2003) and Bury and Uchida (2008) for some more substantial
work on these ‘constituent structure sets’.
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i. e. a representation where the only element is the head yields
a set {{a}, {a}} = {{a}}. To make headedness optional we can
permit that a simply be omitted, which will leave us with the
empty set {} = ∅ and a set {b1, . . . , bn}, i. e. we receive a set
{∅, {b1, . . . , bn}}. These possibilities now cover the full range
of permitted segmental representations, as is illustrated by the
further examples in (34 a–34 c):

(34) (a) |U| = {{U}},
(b) |I| = {∅, {I}},
(c) |I, U, N| = {∅, {I, U, N}}.

To define this format for segmental representations more con-
cisely, let us refer to the two sets in the extended notation in 32

as the head position H and the complement position C4. The
complement position C can then essentially be any subset of V,
i. e.

C ⊆ V,

which includes the empty set since by definition the empty set
is a subset of any set. The head position must be a set with
exactly one member or no members at all (i. e. the empty set),
and since a in {{a}, {a, b1, . . . , bn}} is also in C, must be a subset
of C, i. e.

H ⊆ C and |H| ≤ 1.

By combining these conditions, we can give the general set the-
oretic notation for a segmental representation as

(35) ς
.
= {H, C} where C ⊆ V ∧ H ⊆ C ∧ |H| ≤ 1.

3.5 the set of all segments

Segmental representations are the central operational compo-
nent of ET, and in order to make meaningful generalisations it
was argued for the vocabulary that populates it that this should
for all intents and purposes be an arbitrary set of elements V.
Similarly, to be able to make generalisations about segmental
representations, we must define from these a set that contains
all the well-formed segmental representations in ET, based on
that arbitrary vocabulary. Given that we have already gener-
alised from V to a notation to represent all the segments in ET

4 The issue of overlap between H and C is addressed later in section 3.6,
where a differentiation between complement and dependent is introduced.
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in (35), this task is rather simple. We can substitute the condi-
tions in (35) into the definition of a generalised set Σ of all the
sets {H, C} that conform to them. This gives us the set Σ of all
well-formed segments:

(36) Σ .
= {{H, C} : C ⊆ V ∧ H ⊆ C ∧ |H| ≤ 1} .

We can now generalise the notion of well-formedness in light
of this. Any set x is a well-formed segmental representation if
and only if it is a member of Σ, or

(37) (∀x)(x is well-formed ↔ x ∈ Σ).

Thus, all the sets given in (33 a–34 c) are well-formed (assuming
the right V), since they are all members of Σ. However, the three
sets

(38) (a) {A, I},
(b) {{A, U}, {A, P}}, and

(c) {N, {A}}

are all examples of sets which are not well-formed for any V.
This is because the definition of Σ does not include any sets of
this form. A segment can then potentially fail to be well formed
either by its form (i. e. the structure of sets in it) or by its content
(i. e. by including items which are not members of V). Indeed,
containing a set which is not a subset of V implies that a set is
not in Σ:

(39) (∀x)((∀y ∈ x)(y 6⊆ V → x 6∈ Σ)).

This is especially relevant for proposals such as Cyran (1996),
where V is affected by parametric variation.

In addition to (39), there are three other theorems of impor-
tance about membership in Σ. First, ET assumes that there is
a completely empty representation, || (usually realised as [@]),
i. e. there should exist in Σ a segment ς such that this ς only
contains the empty set:

(40) (∃ς ∈ Σ)(ς = {∅}).

proof : Let V be an arbitrary set and Σ be the set {{H, C} :
C ⊆ V ∧ H ⊆ C ∧ |H| ≤ 1}. ∅ ⊆ V since by definition ∅ is a
subset of all sets, thus C ⊆ V is true for C = ∅. Similarly, since
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∅ ⊆ ∅ by definition, H ⊆ C is also true for H = ∅. |∅| = 0
and 0 ≤ 1, thus |H| ≤ 1 is true for H = ∅. Since H = ∅, C = ∅
satisfies all conditions, {∅, ∅} = {∅} is a member of Σ. �

Second, from the IIP it follows that, for each element, there
must be in principle a well-formed representation only com-
prised of that one element. This is called a simplex representa-
tion. However, stating and proofing this theorem is a lot easier
once we have introduced the head and complement relations in
section 3.6 and I will return to it there.

Third, it is argued that the purest independent interpretation
of an element is visible in the simplex representation where
it is also the head, i. e. representations such as |A| and |N|.
Let us call these types of representations singletons, because
their set-representations collapse into a singleton set, e. g. |A|
becomes {{A}, {A}} = {{A}} (A set {x} with only one mem-
ber is called a singleton). While reference to this is somewhat
obscured by the common practice to only indicate headedness
when it is important for differentiation in work on ET5, there
should be a well-formed singleton representation for every mem-
ber of V, i. e.

(41) (∀v ∈ V)((∃ς ∈ Σ)(ς = {{v}})).

proof : Let V be an arbitrary set, v ∈ V, and Σ given by
{{H, C} : C ⊆ V ∧ H ⊆ C ∧ |H| ≤ 1}. Assume C = {v}, then
C ⊆ V is true since all members of C are necessarily members
of V. Similarly, assume H = {v}, then H = C which implies
H ⊆ C is true. Since |{v}| = 1, |H| ≤ 1 is also true and thus for
any v ∈ V, {{v}, {v}} = {{v}} is a member of Σ. �

3.6 heads , complements and dependents

Now that the format for segmental representations has been
fixed and we have the means to refer to the segments of ET
via Σ, we need to establish relations within the segments. In
section 2, the notion of head and dependent elements were in-
troduced, however in 3.4 I have drawn a picture of heads as
partial order over a set, in analogy with representations of syn-
tactic constituents. In actuality, headedness in segments can be

5 A practice that clearly adds to the vagueness of definition of the theory and
should therefore probably be avoided, or at least based on the category of
‘where it is obvious’ rather than ‘where it makes a difference’. All too often
the latter case only becomes apparent in later work.
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thought of as both structural and relational. Consider the fol-
lowing statement of clarification from Harris (1994):

Terms such as onset and nucleus refer to categories
of syllabic structure. Head, on the other hand, is not
a categorial term but rather refers to a phonologi-
cal function or relation, specifically one that is con-
tracted between positions. (Harris, 1994, p. 149)

This clearly expresses the idea that the head occupies a differ-
ent position its complement or dependents. This becomes even
clearer if we illustrate the scheme from (35) as a tree, as in (42).
A slightly more useful representation is tree (43) however.

(42) ς

a {b1, b2, . . . , bn}

(43) ς

H

a

C

b1 b2 . . . bn

Here the positional properties are clearly apparent, and differ-
ent relations result structurally. In familiar terms from syntactic
discourse, ς dominates both a and all b. The first node domi-
nated by ς would then be referred to as the head (in actuality,
ς would be expected to form a category aP, a being the head),
and the second node the complement (where there is an extra
step indicated, with the dominating node not indicated, in 43).
While the segmental representations used in this model clearly
indicate a similar structure to syntactic treelets, I will advocate
a somewhat different definition of these relations.

Although only the terms head and dependent are commonly
used, work in ET actually makes reference to segmental content
in three ways: (a) it refers to the head of a segment, (b) it refers
to the dependents, i. e. all the elements but the head, and (c) it
refers to all the elements of the segment regardless of whether
they are head or dependent. I will use the term complement to
refer to precisely this last frame of reference. All three of these
relations are mappings from a segment ς ∈ Σ to a subset of
V, and in the notation {{a}, {a, b1, . . . , bn}} one can intuitively
pick out the head and complement (they are the first and sec-
ond set, respectively).

In set theoretic terms, reference is also simple. The head re-
lation indicates what both subsets have in common, i. e. it is
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exactly the intersection of the subsets of ς. The head relation
can thus be defined as

H : Σ 7→ ℘(V)(44)
H(ς) =

⋂
ς.

Similarly, the complement is equivalent to the union of the
subsets of ς. Since {a, a} = {a}, and the head is always a subset
of the complement, this always turns out identical to larger of
the two subsets, the complement:

C : Σ 7→ ℘(V)(45)
C(ς) =

⋃
ς.

The set of dependents is indicated by the relation that maps
from the segment to all the elements in the complement ex-
cept the head. We can thus use the two relations for head and
complement, and indicate the dependency relation as that of
complement minus head, i. e.

D : Σ 7→ ℘(V)(46)
D(ς) = C(ς) \H(ς).

With these three relations we can also return to the theorem
of the existence of a simplex element for all v ∈ V discussed
in section 3.5. A simplex element is one that only employs
one element in its representation. There are actually two types
of segments to which this applies, those that are one-element,
self-headed segments (i. e. singletons, cf. theorem 41) and those
which have only one element but that element is not also the
head. The characteristic properties of this type of segment is
thus that the complement contains exactly one element, the
complement is {v}. The singleton is then a special case of the
simplex representation (we have another proposition, namely
that every singleton representation is also a simplex representa-
tion). The proposition then is that such a representation exists
for all elements in V, that is

(47) (∀v ∈ V)((∃ς ∈ Σ)(C(ς) = {v})).

proof : Let v be a member of an arbitrary set V and ς a
member of the set Σ, which itself is given by {{H, C} : C ⊆
V ∧H ⊆ C∧ |H| ≤ 1}. For any v ∈ V, {v} ⊆ V necessarily, and
thus assuming C = {v} satisfies C ⊆ V. For both H = ∅ and
H = {v} the other two conditions are satisfied (cf. theorems 40

and 41). By the definition of C(ς) =
⋃

ς, i. e. either ∅ ∪ {v} or
{v} ∪ {v}, for both of which C(ς) = {v}. �
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3.7 operations : compose and decompose

While we now have the means to accurately define segmen-
tal representations and covered the relations that hold within
segments, of central importance are of course the means with
which such segmental representations can be altered. There are
two operations in ET, compose, which adds elemental content to
a representation, and decompose, which removes elemental con-
tent from representations. Since they alter, rather than ‘derive’
representations, their essential function is to map one segment
ς1 to another ς2, i. e. they are Σ 7→ Σ, so much is clear from
the literature at least. In addition, reference has to be made to
the material to be in– or excluded however, and the means by
which this is done is something that the literature has been en-
tirely quiet on. There are several options: First, we could let
the operations make use of an additional well-formed repre-
sentation, which can be united/intersected with the targeted
segment to map to a different segment. These could be defined
as

comp : 〈Σ, Σ〉 7→ Σ(48)
comp(ς1, ς2) = {H(ς1) ∪H(ς2), C(ς1) ∪C(ς2)}, and

decomp : 〈Σ, Σ〉 7→ Σ(49)
decomp(ς1, ς2) = {H(ς1) ∩H(ς2), C(ς1) ∩C(ς2)}.

While this is very simple formally, there are several problems
with this approach. For one, it would mean that a supraseg-
mental grammatical component that effects such operations to
take place would have to have the full means to build appropri-
ate well-formed representations in order to feed an appropri-
ate second argument to the operations. This is both somewhat
problematic for the few of compartmentalisation and contrary
to the point of providing a means to validate representations
and define operations at the subsegmental level at all. There
is also an empirical problem, arising principally from the re-
quirements of the SOHC: While it would be easy enough to re-
move several elements from a representation’s complement at
once, any instance of decomp() could only ever remove one
single element from the head position at once. There are how-
ever phonological processes that seem remove any head at all,
such as head-alignment (a type of harmonic process found for
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instance in Korean vowel harmony, see Lee 1996), or the ad-
vanced stages of lenition which eventually lead to an empty rep-
resentation. This would require that the grammar either look
ahead at the head of the target segment and then remove it,
which is easy enough if somewhat awkward intuitively by de-
composing the singleton of the target segment’s head, i. e. via
decomp(ς1, {H(ς1), H(ς1)}), or that it iterate through all ele-
ments in V to form their singletons and remove them, which
does not require reference to the content of the target segment
by another component.

Second, they may add or remove only a single element at a
time, i. e. all operations are 〈Σ, V〉 7→ Σ. This is the case that
requires the least assumptions and support, but it will require
two variants of either operation, one for targeting heads and
one for targeting the complement. This would leave us with
four operations,

comp : 〈Σ, V〉 7→ Σ(50)
comp(ς, v) = {H(ς), C(ς) ∪ {v}},

decomp : 〈Σ, V〉 7→ Σ(51)
decomp(ς, v) = {H(ς), C(ς) ∩ {v}},

hcomp : 〈Σ, V〉 7→ Σ(52)
hcomp(ς, v) = {H(ς) ∪ {v}, C(ς)}, and

hdecomp : 〈Σ, V〉 7→ Σ(53)
hdecomp(ς, v) = {H(ς) ∩ {v}, C(ς)}.

Of course these face the same problem for processes removing
all heads from a representation, but they do not strike an unjus-
tified imbalance between the ability to target multiple elements
at once for complements but not heads. A further advantage is
that through their openness of the second argument this is less
restrictive on the requirements for phonological processes. This
prevents us from precluding without justification the existence
of processes that may be prevented by their way of operation.

Imagine for instance a phonological process that is triggered
by representations with headed |A| which causes adjacent seg-
ments which contain |A| to promote |A| to headhood, as pro-
posed to account for Korean vowel harmony by Lee (1996). We
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can imagine two cases of such a process. First, one in which al-
ready existing heads, e. g. in |I, A| are overwritten to |I, A|, as is
the case for Korean where [e] = |I, A| changes to [E] = |I, A| un-
der the process of A-head alignment he proposes. Second, one
in which this scenario blocks the process from applying (i. e.
where [e] in the same situation would have blocked A-head
alignment). With the previous proposal the second case is un-
modellable, while in the latter it is easy enough to say that the
result of hcomp({{I}, {I, A}}), which is {{I, A}}, is not actually
a well-formed segment (it is not a member of Σ) and thus the
term hcomp({{I}, {I, A}}) is undefined since hcomp is defined
as a mapping to Σ. This prevents the process from applying,
unless the head is decomposed first (which is what would be
done to model the first case).

Third, we can make the second variant more convenient for
reference by retaining the split between operations that target
the head and complement separately, but allowing multiple ele-
ments to be composed or decomposed at once. This is achieved
by making the second argument any subset of V, as in

comp : 〈Σ,℘(V)〉 7→ Σ(54)
comp(ς, v̄) = {H(ς), C(ς) ∪ v̄},

decomp : 〈Σ,℘(V)〉 7→ Σ(55)
decomp(ς, v̄) = {H(ς), C(ς) ∩ v̄},

hcomp : 〈Σ,℘(V)〉 7→ Σ(56)
hcomp(ς, v̄) = {H(ς) ∪ v̄, C(ς)}, and

hdecomp : 〈Σ,℘(V)〉 7→ Σ(57)
hdecomp(ς, v̄) = {H(ς) ∩ v̄, C(ς)}.

All of these could of course be mapped on the second proposi-
tion made above by applying them one to one to every v ∈ v̄.
These are also very convenient in terms of referring to the kind
of head-decomposition discussed for option one: hdecomp(ς, V)
will decompose any head. Since options two and three are then
the best justified in terms of not going beyond what the litera-
ture seems to implicitly suggest in restrictions on composition,
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these are clearly to be preferred. The last option introduced is
moreover notationally more convenient, and I therefore advo-
cate this as a definition for the set of operations in G. However
this is clearly an aspect of ET that requires further clarification
in the literature and through empirical studies on the limita-
tions of composition and decomposition of heads.

3.8 element geometry

The content discussed so far gives a complete outline of ET’s
core. However, in section 2 I have also discussed two aspects of
ET so far left unaccounted for: element geometry and elemental
antagonism. Both of these can easily be added to the above
outline of G, but let us first turn to element geometry.

Essentially element geometry is an arrangement of the ele-
ments in V, which allows to refer to groups of these elements.
Further, none of these groups may overlap, i. e. an element |X|
cannot be headed by two different nodes at the same time.
These properties are mirrored in the set-theoretic notion of a
partition. A partition P of a set X is a set which divides all the
members of X into subsets which are collectively exhaustive
(i. e.

⋃
P = X) and where there exist no two subsets in P which

share a member (i. e. ( 6 ∃(A, B) ∈ P)(A ∩ B 6= ∅), or negated
(∀(A, B) ∈ P)(A ∩ B = ∅)). If we are satisfied that such a parti-
tion is sufficient to replace element geometry, then we can give
a set Γ of all the possible partitions (‘geometries’) of V as

(58) Γ =
{

γ : ∅ 6∈ γ ∧
⋃

γ = V ∧ (∀ (α, β) ∈ γ) (α ∩ β = ∅)
}

where γ is a specific partition of V. There is a caveat to this ap-
proach however: it is a group based approach, not a hierarchical
approach, and thus there are no subdivisions possible, i. e. we
cannot represent the idea that two or more nodes themselves
are dominated by another node. Given geometries of only two
hierarchical levels as in example (20), repeated in (59) below,
this is not problematic however.

(59) ×

Root

P h N Laryngeal

H L

Place

A I U R
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Given the vocabulary V = {P, h, N, H, L, A, I, U, R}, this geom-
etry could be replaced by a partition γ = {{P, h, N}, {H, L},
{A, I, U, R}}. We can call the set {H, L} Lar and the set {A, I, U, R}
Pla. Now delinking of the root node in (59) can instead be ac-
counted for by decomp(ς, V), delinking of the laryngeal node
by decomp(ς, Lar), and so forth. A more interesting case is the
linking of one node, say the place node, from a segment ς1
to a segment ς2. To illustrate this, let us revisit the example
of Kpelle nasal place assimilation from section 3.8. Here a seg-
ment ς1 = {∅, {N}} only specified as a nasal, assimilates in
place to a segment ς2, in the case of [nduE] a voiced alveolar
stop, i. e. ς2 = {∅, {P, R}}. To spread any and all place ele-
ments from ς2 to ς1 without making explicit reference to ς2’s
content, when then can use the intersection of C(ς1) and Pla,
which is then composed to ς1, or in generalised form ς̄1 =
comp(ς1, C(ς2) ∩ Pla). Specific for the [nduE] example we can
then substitute in the appropriate values and resolve this as
follows:

ς̄1 = comp({∅, {N}}, C({∅, {P, R}}) ∩ {A, I, U, R})
= comp({∅, {N}}, {P, R} ∩ {A, I, U, R})
= comp({∅, {N}}, {R})
= {∅, {N, R}}. (= [n])

Of course decomposition and composition can here be com-
bined to first remove any place elements and then replace them
with those of a different segment. For instance let ς1 = {∅,
{A, R, L, P}} and ς2 = {∅, {U, H}} and the goal is to replace all
place elements in ς2 with those from ς1. This then involves de-
composition of Pla from ς2, and we have ς̄2 = decomp(ς2, Pla) =
{∅, {H}}. This is followed by composition of all the elements in
C(ς1) which are also in Pla, i. e. the intersection C(ς1) ∩ Pla =
{A, R}. Thus, ¯̄ς2 = comp(ς̄2, C(ς1) ∩ Pla) = {∅, {A, R, L, P}}
maps to the desired segment which has the same place ele-
ments as ς1 but retained all other elements.

While we can of course make up any number of such parti-
tions γ ∈ Γ, the basic idea of element geometry is that the ge-
ometry is universal and not language dependent. Even if that
is not assumed, it would not make sense to have more than one
geometry for any specific language, and thus an extension to
G is best made by adding a specific γ ∈ Γ, i. e. GΓ = 〈G, γ〉, or
more fully,

(60) GΓ = 〈V, Σ, R, O, γ〉.
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Given the common disagreement on the layout of both feature
and element geometry, a question of interest is of course still
how many such partitions there can be, i. e. what is the cardi-
nality of Γ for any one V (cf. also Kornai, 1993)?

3.9 element antagonism

While not much of the current work in ET makes use of element
geometry (for instance Backley 2011 does not even discuss it),
which is possibly related to the stark reduction in the number
of elements assumed, the notion that two elements can share
a single tier, termed element antagonism, is still common and of
some importance in current work. Antagonistic elements are es-
sentially pairs of elements which may not occur in a representa-
tion together; while apparently motivated in opposing acoustic
characteristics, as opposed to geometric arrangements, these an-
tagonistic pairs are language dependent (Backley, 2011). Thus,
we need to extend G with an arbitrary set ∆ of excluded ele-
ment combinations. ∆ can simply be a set of sets which are to
be excluded from occurring as complements, since heads are
limited to maximally one element, e. g.

(61) ∆ = {{H, L}, {I, U}, . . .}.

However, simply extending G with this set is not enough. Be-
cause it functions somewhat similarly to the vocabulary V (it
is somewhat of an antagonist to V), we must also modify the
definition of what a well-formed segment is to the exclusion of
all δ ∈ ∆. Essentially, we must introduce a condition on Σ that
there must not be any δ ∈ ∆ which is a subset of any C, i. e.

(62) (∀ς ∈ Σ)(( 6 ∃δ ∈ ∆)(δ ⊆ C(ς))).

We then have to revise the definition of Σ as follows:

Σ̄ .
= {{H, C} : C ⊆ V ∧ H ⊆ C ∧ |H| ≤ 1∧ (∀δ ∈ ∆)(δ 6⊆ C)} .

This would mean that, to include element antagonism, we would
define G as

(63) G∆ = 〈V, Σ̄, R, O, ∆〉

with the modified set Σ̄. If, for any reason it is not desirable
to replace Σ, another possibility is to include Σ̄ as a further,
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reduced set of well-formed segmental representations. In this
case the definition of Σ̄ can be abbreviated to

(64) Σ̄ .
= {ς : ς ∈ Σ ∧ (∀δ ∈ ∆)(δ 6⊆ C(ς))}

and G extended to G∆ = 〈V, Σ, R, O, ∆, Σ̄〉.
While it appears from the literature that antagonistic rela-

tions are limited to pairs of elements, no explicit statement is
to be found anywhere to that effect and clearly in AP it would
be no problem to assume more than two primes share a tier.
Nonetheless, an important limitation on possible ∆’s is that
they may only contain elements that are actually part of the
vocabulary. The set D of possible ∆ can then be given as

(65) D =
{

∆ :
(
∀x ∈

⋃
∆
)
(x ∈ V)

}
.

If we want to be more restrictive and actually limit δ’s to being
pairs of elements, we can give D as

(66) D2 =
{

∆ :
(
∀x ∈

⋃
∆
)
(x ∈ V) ∧ (∀δ ∈ ∆) (|δ| = 2)

}
.

3.10 summary

In this chapter I have shown how the ET model of subsegmental
phonology can be captured in formally precise terms using ba-
sic constructs from set theory and first order predicate calculus.
At the centre of the proposed formalism was the set Σ which,
for a given vocabulary V, defines the entire set of well-formed
representations permitted by ET. Using this it was proved that
some of the key theorems about segmental representations in
ET, such as the existence of empty representations and sim-
plexes of all elements, hold of the formalisation presented here.
In giving a formal account of the relations of head and depen-
dent, it was advanced that although not discussed explicitly in
the literature, ET also makes use of a relation which maps to
the entirety of the elemental content of the segment, which I
have introduced with the term complement here and which has
shown to be useful in the following definitions of relations and
operations. It was pointed out that something that has been
overlooked in the informal, graphical discussion of ET before is
how the composition and decomposition operations are to be
implemented, but I have advocated the view that these come
in two flavours each, one to target the head of a segment and
one the complement. Finally, it was shown how the basic core
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model of ET can be extended to include an alternative for ele-
ment geometry, namely partitions of V, and the type of element
antagonism seen in Backley (2011) to replace the notion that cer-
tain elements share tiers.





4
T H E G E N E R AT I V E C A PA C I T Y O F E L E M E N T
T H E O RY

4.1 introduction

The ET approach to segmental representation is principally char-
acterised by its privative, independently interpretable primes.
This is opposed to the bivalent features of theories in the SPE
tradition of FT and Underspecification Theory (UT) (Archangeli,
1988; Steriade, 1995).

A frequent argument made by advocates of ET is that it has a
generative capacity more closely reflective of the phonological
segments and patterns attested across languages, while feature
models faced a problem of overgeneration (e.g. Backley, 2009,
2011; Chen, 2010). A principal factor behind this argument is
that ET employs a much smaller set of primitives, with usually
around six or seven elements, while most feature-systems posit
upward of 20 features1. However, this argument has not been
formally substantiated in the literature to-date; though discus-
sions of the generative capacities of FT and UT exist (e.g. Reiss,
2012).

In this chapter, I will thus look at the Strong Generative
Capacity (SGC) and Generative Power (GenP) of ET and com-
pare this explicitly to the two feature-based models FT and UT.
Following on from the work presented in (Reiss, 2012) and
my work on ET in the previous chapter, I will adopt a set-
theoretic approach to the combinatorics of subsegmental prim-
itives in the three theories and discuss this in the context of
cross-linguistic phonological variation, Universal Grammar (UG)
and the phonetics–phonology interface.

4.2 generative capacity and generative power

The Strong Generative Capacity (SGC) of a grammar G is de-
fined as the set of strings that its rules allow us to generate
from its vocabulary V (Bach, 2003).

1 SPE makes use of at least 23 features (Chomsky and Halle, 1968), Kornai
discusses the possibility of up to 36 features (Kornai, 2008).

37
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Assuming that theories of phonological representation can
be seen as (at least partial) grammars of the type outlined in
section 3.2, SGC refers to the set Σ of all well-formed represen-
tations. However, as a direct consequence of the same combina-
torial rules and operations contained in that grammar, one may
also usefully look at sets other than Σ. In this context, Reiss
(2012) specifically investigates the two questions of possible in-
ventories and definable linear phonological rules of the type
x → y/context.

Clearly, the set of possible inventories I predicted by a the-
ory of segmental representation is of the utmost importance in
accounting for cross-linguistic phonemic variation, since this
essentially answers the question of how many possible lan-
guages such a grammar predicts, all else being equal (Reiss,
2012). However, in looking at theories of segmental represen-
tation specifically, such matters as definable rules are of little
relevance since they are attributable mainly to system-external
factors; i. e. whichever form these modifications take, they are
operand on the level of the full segmental skeleton (cf. Scheer,
2013). An important factor that contributes to the formulation
of rules over the segmental tier however are the natural classes
N which are definable from the inventory of primitives V, as
this is what most if not all phonological rules will make refer-
ence to and what essentially allows for the types of phonologi-
cal generalisations such rules make.

I thus argue that we should focus on the three following prop-
erties of theories of segmental representation here:

1. The set Σ of all the possible segments

2. The set I of all the possible inventories

3. The set N of all the defined natural classes

However, since we are actually discussing the cardinality (viz.
size) of these three sets, it may additionally be useful to make
a distinction between the specific generative capacity given the
size of the specific vocabulary assumed in that grammar, and
a more generic version where the vocabulary sizes are equated.
While these terms are often used interchangeably elsewhere, I
will adopt the two terms Generative Capacity (GenC) for the spe-
cific output of a grammar G given its own vocabulary VG and
the term Generative Power (GenP) for the output of different
grammars G1, G2, . . . , Gn with a vocabulary V of equal cardinal-
ity.
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4.3 variation and general considerations

It has been amply pointed out that many issues other than ac-
curacy of input–output need be considered in the design of
grammatical models, especially UG and principle and parame-
ter frameworks (e.g. Chomsky, 2002, 2007; Hale and Reiss, 2008;
Reiss, 2012). One particular concern in what has been referred
to as the ‘bottom-up approach’ to UG is the consideration that
it is preferable to attribute as little as possible to the biologi-
cal design of the language faculty. The reasoning is along the
lines of Chomsky’s statement that ‘the less attributed to genetic
information for determining the development of an organism,
the more feasible the study of its evolution’ (Chomsky, 2007)
and we may consequently wish to keep the number of innate
phonological primitives (i. e. V) minimal.

Yet, with these primitives we have to cover not only the phono-
logical systems attested across the world’s languages, but equally
consider speaker-to-speaker variation at the I-language level,
and what we may refer to as the attestability–computability di-
vide in the sense of Hale and Reiss (2008). That is, we must ac-
count not only for attested or even attestable I-languages, but
for all those I-language which are computable but may be unat-
tested for any number of reasons, not least because it would be
a logical fallacy to expect that every I-language would be borne
out solely because it is both computable and attestable. It is this
divide that may be the source of the apparent disagreement on
whether a large generative capacity is desirable or not. As Reiss
(2012) points out, it appears as though discussion of syntactic
parameters favours a large margin over attested languages (e.g.
Kayne, 2000; Newmeyer, 2004), while phonological overgenera-
tion appears to be disapproved of (e.g. Giegerich, 1992; Kornai,
2008; Backley, 2011). Reiss himself finds it surprising that one
should disapprove of a large generative capacity in phonology,
given the array of cross-linguistic variation and that present
models would allow us to easily model more than 10 billion
languages and several tens of thousands of segments with just
a few features (Reiss, 2012, p. 173).

If we follow this, we are then left with two counterbalancing
guidelines for designing our model of a grammar: minimise
the vocabulary and maximise generative capacity. However, re-
call the arguments for looking at Σ, I and N separately made
in section 4.2: if we acknowledge that these sets make differ-
ent contributions to a grammar, then it may well be that we
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cannot apply the same reasoning to them. For instance the size
of attested phoneme inventories seems to be limited, and we
may not want to predict an extensive number of natural classes
and rules that are not necessary to account for phonological
patterns — this would easily lead us to an ‘anything goes’ po-
sition, contrary to the aim of the UG enterprise: to make gen-
eralisations about what is and what is not computable by the
language faculty. In the following sections, I will discuss this
further and give my reasoning for why we should account for
some of these sets with a large margin and for others with only
a small margin over what is attested.

4.4 segments and inventories of segments

Individual languages’ phonemic inventories have been argued
to be anywhere between 11 (Rotokas, Pirahã) and 141 (!Xũ)
(UPSID; Crystal, 2010) and this has been taken as one of the mo-
tivations for restricting the generative capacity of phonological
theories (cf. Giegerich, 1992; Kornai, 2008). Conversely, it may
be pointed out that variation in-between phonemic inventories
is abundant, which in turn should lead to the desirability of a
large generative capacity (Reiss, 2012). I argue that we have to
differentiate between two factors here, maximal size of a single
inventory and the possibility of variation between inventories
of such limited size. The latter issue principally touches upon
the phonetic resolution of the assumed primes.

Considering first the issue of maximal size of single inven-
tories, without paying regard to inter-inventory variation. We
can of course note that these appear to be limited. The question
is whether it is desirable to attribute this limitation, at least in
part, to the design of the innate part of the grammar. From the
assumption that the principle set of primitives V is innate and
that UG dictates how these primitives may combine, it directly
follows that the combinatorial possibilities allowed over V are
a limit to the size of any single phonemic inventory.

If we subscribe to the notion that a theory that assumes a
smaller set of innate primes is preferable (all else being equal),
maximal single inventory size is limited directly by the genera-
tive power of the grammar. Since the set of all possible invento-
ries is the powerset of the the SGC (viz. the possible segments),
by default we predict a set of possible inventories which is not
evenly distributed in space. In fact, since the distribution of car-
dinality of the subsets of the powerset of any set is normally
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distributed, there will be many available inventories of the me-
dian size and very few at either extremes.

From this at least we can conclude that it is a direct conse-
quence of the assumptions we make about UG that phonemic
inventories of very small or very large size should be rare (since
there are increasingly few available) and the vast majority of in-
ventories should fall somewhere in-between the two extremes.
In effect, if languages’ phonemic inventories were assigned by
chance (which of course is not the case), we would expect their
sizes to be normally distributed.

Figure 3 illustrates the distribution of phonemic inventory
sizes in the UCLA Phonological Segment Inventory Database
(UPSID). Each inventory is mapped by a cross (×), while the
line behind is a normalised average2. Note that this almost re-
flects a normal distribution but is skewed toward the lower
end of the available breadth of inventory sizes, and there must
thus be some factors external to UG which disfavour larger in-
ventories — which following Hale and Reiss’s (Hale and Reiss,
2008) arguments for a substance free approach to phonology,
we should not concern ourselves with here. More importantly
however, there are still some inventories to be found in these
disfavoured intervals, so that these external factors may be ab-
solute only to a certain degree3. Since UG always limits inven-
tory size and the space containing all possible inventories is
normally distributed, it appears reasonable to aim for a gener-
ative power which, given a certain size of V, limits the size of
any single inventory with a small margin over what is maxi-
mally attested but allows for a large enough margin to account
for a basic degree of variation. This should not require mod-
elling the internal distribution within that set through active
design considerations of the grammar itself.

From this we come to the second consideration, variation and
the phonetic resolution of phonological primitives. If we accept
that inventory size is limited, both by UG and external factors,
and through this relegated to the space of possible inventories
which does not in fact allow for the most variation between
inventories (recall the skewedness of real phonemic inventory

2 g : x → f(x−1)+f(x−2)+f(x)+f(x+1)+f(x+2)
5 , where f(x) gives the number of

languages with a given inventory size and x ∈N.
3 For instance a system with just one or two phonemes may simply not pro-

vide enough possibilities to encode information given certain other proper-
ties of the world (including the language faculty).
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Figure 3: Distribution of phonemic inventory sizes in UPSID.

sizes in figure 3), then how can we sufficiently account for all
the detailed surface variation we see cross-linguistically?

This question is principally related to what may be referred
to as the phonetic resolution of segmental primitives, i. e. the
richness in detail encoded by the primitives of grammar at the
interface to phonetic interpretation. The less detail is directly
encoded in these primes and the more is ascribed to phonetic
interpretation, the more systematic variation is possible on the
surface. We may ask how many different phonetic outputs can
be assigned to an identical representation in the grammar. For
instance ‘voiced’ plosives in some languages are fully voiced, in
others they are partially voiced, unaspirated, tense, &c., yet they
encode the same two- or three-way contrast across languages.
Then, is it really necessary to encode the precise mechanism
with which this happens in the set of primitives of the grammar;
do we need features for fully-voiced, partially-voiced, aspirated,
tense/slack, and so forth or is it enough to be able to encode
a three-way contrast and account for the different output in
terms of variation of the phonetic interpretation of the same
primitive? One possible assumption is that a binary feature
[±voice] is interpreted as voiceless/aspirated in one language,
but tense/slack in another, and partially voiced/voiceless in
yet another language. Conversely, the phonological patterning
and behaviour of voicing contrasts in different languages may
provide evidence that there are more than two underlying cat-
egorial distinctions (cf. e. g. Halle and Stevens, 1971; Honey-
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bone, 2005). Both types of assumption are in fact quite common
in phonological work involving voicing contrasts. Consequen-
tially, we may ask how many possible phonetic realisations can
a single phonological representation have? A theory that allows
enough variation of this kind does not need a very large set of
possible inventories, but many languages can have highly simi-
lar or even identical sets of segmental representations, yet show
fine-grained variation in the phonetic ‘shapes’ of their phone-
mic inventories.

To summarise, following my argumentation, the size of the
set of possible segments Σ must minimally be able to account
for the largest attested phonemic inventory, with a small sur-
plus. Beyond this, there is no need for a large size of Σ. In order
to keep our grammar simpler and less detail rich, it is thus
desirable to keep the size of Σ small. Conversely, variation be-
tween the phonemic inventories of languages is contributed to
both by the size of Σ and the phonetic resolution of the gram-
mar’s primitives; yet an argument may be made that it is prefer-
able to have a large set of possible inventories I to allow for
enough variation in the underlying segmental representations
at a lower size of the specific inventory ι — low phonetic resolu-
tion can then further contribute to this basic level of variation4.

4.5 natural classes

A largely separate issue is that of the natural classes predicted
by a grammar. Natural classes are the means by which the
grammar can select specific subsets of an inventory ι. As such,
they are what determines the domain and co-domain of phono-
logical processes (or rules) which can be applied to a representa-
tion. By definition, natural classes are principally intersections
between the content of different segments ς, i. e. given an in-
ventory ι with the members ς1 = {a, b, c}, ς2 = {b, c, d}, ς3 =
{a, d}, we can say that ς1 and ς2 form a set of natural classes
N with the members A = {x : a ∈ x}, B = {x : b ∈ x},
C = {x : c ∈ x} and D = {x : d ∈ x}, but also of their combina-
tions, e. g. BC = {x : c ∈ x ∧ b ∈ x}; effectively, a natural class
exists for every possible combination of primitives, i. e.

(67) (∀v ∈ ℘(V))((∃ν ∈ N)(ν = {ς : ς ∈ Σ ∧ v ⊆ v})).
4 An additional point that needs to be considered is of course the markedness

of the predicted inventories. The assumption made for the sake of compara-
bility here is that all three theories are able to generate a large enough and
broadly similar set of unmarked inventories.
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Similarly to Σ, I argue for a set N of natural classes that is
more restrictive and closely matches the system-internal pat-
terning of primes found in any given language. It is undesir-
able to predict natural classes where there is no evidence that
such a class exists.

4.6 possible segments

In FT, each segment is composed of sets of features paired with
a value β ∈ B. Following Reiss (2012), if we say that VFT =
{F1, F2, . . . , Fn} for n features, then a segment ςFT can be given
as a set of simple feature value pairs. For B = {+,−}, we get

(68) ςFT = {〈F1, β1〉, 〈F2, β2〉, . . . , 〈Fn, βn〉}.

UT essentially extends this mapping by a further possible value
to B = {+,−, �}, where ‘�’ means ‘unspecified’ and GUT does
not allow mapping any � 7→ {+,−}.

The combinatoric possibilities for FT and UT can then be given
as

(69) |ΣFT| = 2|VFT|, and

(70) |ΣUT| = 3|VUT|.
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|V| |ΣFT| |ΣUT| |ΣET|

0 1 1 1

1 2 3 3

2 4 9 8

...
6 64 729 256

7 128 2,187 576

8 256 6,561 1,280

9 512 19,683 2,816

...
20 1,048,576 3,486,784,401 11,534,336

21 2,097,152 10,460,353,203 24,117,248

22 4,194,304 31,381,059,609 50,331,648

23 8,388,608 94,143,178,827 104,857,600

24 16,777,216 282,429,536,481 218,103,808

Table 3: Some values of |Σ| for different sizes of V.

The set ΣET of all the possible segments in ET has already
been defined in (36) in section 3.5; we only need to find the
cardinality of the set, |ΣET|. This is given by5

(71) |ΣET| =
(

1 +
|VET|

2

)
× 2|VET|.

Where 2|V| are the combinatoric possibilities covering all com-
plements in Σ (i. e. ℘(V)); single optional headedness then adds
|V|
2 2|V| to the cardinality of Σ.

Sizes of Σ for all three are given for some vocabulary sizes in
table 3. We see that SGC for most instantiations of ET is some-
where between 256 and 1, 280 segments. In comparison, FT and
UT with at least 20 features generate upward of 1 million to
3 million segments. Notably, an instance of ET with this many
elements would generate far more segments than either of the
feature theories.

ET has a greater GenP than UT and UT a greater GenP than FT.
This can be seen especially in the plots in figures 4 and 5. Plot

5 This coincides with sequence A001792 in the Online Encyclopædia of Integer
Sequences, http://oeis.org/A001792.

http://oeis.org/A001792
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4 also shows clearly how the exponentiality of their functions
leads to an explosion of the size of Σ well below 20 vocabulary
items for all three theories.
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Figure 4: Plot of |Σ| for vocabulary sizes from 0 to 20, y-axis in mil-
lions.
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Figure 5: Plot of log10(|Σ|) for vocabulary sizes from 0 to 50.

4.7 possible inventories

The set of all the inventories I derivable from a given set Σ
consists of all the possible combinations of the segments in Σ,
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i. e. I = ℘(Σ). Since |℘(X)| = 2|X|, we can give |I| for each of
the three theories as

(72) |IG| = 2|ΣG|.

As can be seen from the plot in figure 6, this function grows
extremely fast for any of the three theories. The data in table
4 show how incredibly large |I| really becomes for only a few
primitives.
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Figure 6: Plot of log10(|I|) for vocabulary sizes from 0 to 10.

|V| |IFT| |IUT| |IET|

0 2 2 2

1 4 8 8

2 16 512 256

3 256 1.342×108
1.049×106

4 65,536 2.418×1024
2.815×1014

5 4.295×109
1.414×1073

5.192×1033

6 1.845×1019
2.824×10219

1.158×1077

7 3.403×1038 ... 2.47×10173

8 1.158×1077 ...
9 1.34×10154

Table 4: Some values of |I| for different sizes of V.
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4.8 possible natural classes

The set of natural classes defined by FT/UT and ET is an area
where the privative–binary distinction matters. With privative
primes, only the existent primes and their combinations form
natural classes. In binary systems, natural classes exist for both
the + and −-valued primes as well as partial matrices.

All possible combinations in ET are covered by powerset, i. e.

(73) NET = ℘(VET), and

(74) |NET| = 2|VET|.

This is the same as |ΣFT|.
For FT, in addition to full matrices, partial matrices also de-

fine natural classes. This adds over the 2|VFT| system by allowing
exactly what UT does: leaving v unspecified as �, thus

(75) NFT ≡ ΣUT.

NUT cannot add any further onto the capacity defined by ΣUT,
since this already includes all possible partial matrices.

Consequently, ET with 7 primes predicts 128 natural classes;
but FT/UT with 20 features predict over 3 billion natural classes
(cf. table 3).

4.9 discussion

The results in themselves illustrate that it is important to make
a distinction between GenP and SGC. While it is true to say that
the SGC of FT and especially UT is larger than that of ET, ET
is more powerful than both UT and FT if a similar number of
primitives are assumed. This also shows that the decisive factor
is not the form of representations or a binary–privative opposi-
tion, but vocabulary size.

In terms of fit to the criteria laid out for Σ, I, and N, |ΣET|
provides the best fit since it has a narrow margin over the max-
imal attested size of any single inventory. The rapid growth of
|I| showed that ET, FT and UT are all able to account sufficiently
for variation, regardless of vocabulary size. Indeed, they all pro-
vide a margin of several billion possible unique inventories for
every single person alive today.

A notable difference exists in the number of natural classes:
ET predicts hundreds, whereas FT and UT predict billions. If
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ET accounts sufficiently for attested phonological patterns, this
then poses the question why so many natural classes should
be necessary. Further of course, at this magnitude, one may ask
whether generalisations over such a large set are meaningful at
all.

To summarise, the overall most important factor appears to
lie in the number and kind of primes assumed rather than a
feature–element opposition. A small enough UT system with a
low phonetic resolution could easily satisfy the same criteria,
but as is, the SGC of ET appears to indeed provide the best fit to
general observations about segmental systems.





5
C O N C L U S I O N

The main aim of this dissertation has been to address the lack
of a formally precise definition of the model of segmental rep-
resentation known as Element Theory. For this it was first nec-
essary to narrow down current research in the framework to
what can be understood as the broader consensus on ET in the
recent past and to point out where the main disagreements and
unclarities lie: much debate and change in the theory is cen-
tered around the elements themselves, while unclarity exists
regarding the status of factors such as tier-ordering and the
definition of the composition and decomposition operations.

The aim was then achieved by detailing a set of formal defini-
tions, ground in set theory, which together are able to model ET
as described before. A central proposition of this account has
been that segmental representations can be modeled by a sim-
ple extension of the notation for ordered pairs, {{h}, {h, d1, . . . ,
d2}}, where h represents the head and d the remaining depen-
dent elements. It has been shown how this can be generalised
into a precise definition of well-formedness for segmental rep-
resentations and proofs have been presented that show the cen-
tral properties of ET, discussed under the headings of the SOHC,
ERP and IIP, do hold for these constructs. In formally defining
the head and dependent relations, it has been shown how a
complement relation must also exist, which has been shown
to be useful in the remaining work. Discussion of the compo-
sition and decomposition operations has revealed several pos-
sible ways of defining them. While no definite conclusion was
made as to the correct definition, it has been discussed how
these differ in the predictions they would make and the more
conservative definition was adopted based on this. Finally, it
was shown how the notions of element geometry and shared
tiers can be replaced by introducing partitions of the vocabu-
lary, without reference to tier ordering.

Based on this formal account of ET, the secondary aim was
to evaluate a key claim made by ET advocates: that the gen-
erative capacity of ET provided a better fit to empirical data
than feature theories. It has been argued that this claim must
be dismantled into three separate factors: that of the number
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of segments predicted by a theory, the number of predicted
inventories and the number of natural classes made available.
Based on the data about the variation of segmental inventories
and considerations about the design aims for the UG aspects of
theories of segmental representation, the argument has been ad-
vanced that overgeneration of individual segmental inventories
and natural classes should be limited, but that it is beneficial
to predict many possible inventories. By evaluating these three
aspects as sets, it has then been demonstrated that the claim
that ET overgenerates the least is true, but that this is solely at-
tributable to ET’s use of the fewest primes in practice, while,
possibly somewhat surprisingly, ET is otherwise significantly
more powerful than feature theories given an identical inven-
tory of primitives.

A major limitation of this work is that many propositions con-
tained in the formal definition of ET, as well as the cardinality
of Σ, have not been formally proved and this may usefully be
done in future research to further substantiate the claim that
ET, or at least the account presented here, is internally con-
sistent. While the discussion of generative capacity certainly
demonstrated the usefulness of a formal account, another ma-
jor benefit, the formal verifiability of phonological analyses as
mathematical propositions, has not been demonstrated beyond
few examples of composition and decomposition and further
work could usefully demonstrate how this can lead to further
insights and greater accuracy in phonological research. Beyond
this, a major area of future research could aim to explore how
the sets of segmental representations can be computationally
mapped into an acoustic signal — something that would make
a substantial contribution to demonstrating that an intermedi-
ate level of phonetic representation is indeed not required.
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